Berry, Scott M.

Bayesian adaptive methods for clinical trials - Boca Raton : CRC Press, c2011. - xvii, 305 p. : ill. ; - Chapman & Hall/CRC biostatistics series ; .

"As has been well-discussed, the explosion of interest in Bayesian methods over the last 10 to 20 years has been the result of the convergence of modern computing power and ełcient Markov chain Monte Carlo (MCMC) algo- rithms for sampling from and summarizing posterior distributions. Prac- titioners trained in traditional, frequentist statistical methods appear to have been drawn to Bayesian approaches for three reasons. One is that Bayesian approaches implemented with the majority of their informative content coming from the current data, and not any external prior informa- tion, typically have good frequentist properties (e.g., low mean squared er- ror in repeated use). Second, these methods as now readily implemented in WinBUGS and other MCMC-driven software packages now oʼer the simplest approach to hierarchical (random eʼects) modeling, as routinely needed in longitudinal, frailty, spatial, time series, and a wide variety of other settings featuring interdependent data. Third, practitioners are attracted by the greater ʻexibility and adaptivity of the Bayesian approach, which permits stopping for ełcacy, toxicity, and futility, as well as facilitates a straightforward solution to a great many other specialized problems such as dose-nding, adaptive randomization, equivalence testing, and others we shall describe. This book presents the Bayesian adaptive approach to the design and analysis of clinical trials"--Provided by publisher.

9781439825488


Clinical trials
Bayesian statistical decision theory.
Clinical Trials as Topic.
Bayes Theorem.

615.507 24 / BER/B
Managed by HGCL Team

Powered by Koha